مدل‌سازی تراز آب زیرزمینی با بهره‌گیری از مدل هیبرید موجک- شبکه عصبی مصنوعی (مطالعه موردی: دشت شریف‌آباد)

Authors

  • طاهر رجایی گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه قم
Abstract:

منابع آب زیرزمینی یکی از مهم­ترین منابع تأمین آب می­باشند، از این­رو مدل­سازی آن­ها بسیار حائز اهمیت می­باشد. ارزیابی و پیش­بینی تراز آب زیرزمینی به پیش­بینی منابع آب زیرزمینی کمک می­کند. هدف این مطالعه ارزیابی عملکرد سه مدل رگرسیون خطی چندمتغیره (MLR)، مدل هیبرید موجک- شبکه عصبی (WNN) و شبکه عصبی مصنوعی (ANN) در پیش­بینی سطح آب زیرزمینی (GWL)، بر مبنای دو معیار ریشه خطای مربع متوسط (RMSE) و ضریب کارایی نش- ساتکلیف (E) می­باشد. داده­های استفاده شده در این پژوهش مربوط به دو حلقه چاه مشاهده­ای در حوضه آبریز شریف­آباد استان قم هستند. مدل­سازی تراز آب زیرزمینی چاه­ها با استفاده از داده­های تراز آب زیرزمینی 15 سال و 6 ماه، برای پیش­بینی تراز 19 ماهه دوره آزمون انجام شده است. نتایج نشان داده­اند که مدل موجک- شبکه عصبی تطابق بهتری با مقادیر مشاهده­ای تراز آب زیرزمینی دارد.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

مدل سازی تراز آب زیرزمینی با بهره گیری از مدل هیبرید موجک- شبکه عصبی مصنوعی (مطالعه موردی: دشت شریف آباد)

منابع آب زیرزمینی یکی از مهم­ترین منابع تأمین آب می­باشند، از این­رو مدل­سازی آن­ها بسیار حائز اهمیت می­باشد. ارزیابی و پیش­بینی تراز آب زیرزمینی به پیش­بینی منابع آب زیرزمینی کمک می­کند. هدف این مطالعه ارزیابی عملکرد سه مدل رگرسیون خطی چندمتغیره (mlr)، مدل هیبرید موجک- شبکه عصبی (wnn) و شبکه عصبی مصنوعی (ann) در پیش­بینی سطح آب زیرزمینی (gwl)، بر مبنای دو معیار ریشه خطای مربع متوسط (rmse) و ضر...

full text

پیش بینی تراز آب زیرزمینی دشت شاهرود استفاده از شبکه عصبی مصنوعی تابع پایه شعاعی

     Groundwater level prediction is an important issue in scheduling and managing water resources. A number of approaches such as stochastic, fuzzy networks and artificial neural network have been used for such prediction. A neural network model has been employed in this research for Shahrood plain groundwater level prediction. For this reason, statistical parameters of groundwater level fluct...

full text

پیش بینی تراز آب زیرزمینی دشت شاهرود استفاده از شبکه عصبی مصنوعی تابع پایه شعاعی

پیش­بینی تراز آب زیرزمینی به منظور مدیریت و برنامه­ریزی منابع آب، بسیار مهم است. برای انجام این پیش­بینی، از روش­های متعددی مانند روش­های استوکستیکی، منطق فازی و شبکه عصبی مصنوعی می­توان استفاده نمود. در تحقیق حاضر، مدل شبکه عصبی مصنوعی rbf هیبرید برای پیش­بینی تراز آب زیرزمینی دشت شاهرود مورد استفاده قرار گرفته است. این هیبرید بودن شبکه باعث افزایش دقت روش نسبت به شبکه rbf پایه می­شود. بدین من...

full text

پیش‌بینی اثر تغییرات پارامترهای هواشناسی بر منابع آب زیرزمینی با استفاده از مدل‌های شبکه عصبی مصنوعی (مطالعه موردی: دشت میاندوآب)

در این تحقیق، اثر تغییر اقلیم بر منابع آب زیرزمینی دشت میاندوآب در استان آذربایجان غربی مورد بررسی قرار گرفت. در این راستا، سناریوهای A1B، A2 و B1 از طریق مدل ریزمقیاس نمایی LARS-WG و با به­کار بردن مدل گردش عمومی جو HadCM3 و مدل شبکه عصبی مصنوعی در دو دوره زمانی مختلف (2065-2046، 2099-2080) مورد مطالعه قرار گرفتند. بدین منظور از داده­های ماهانه عمق سطح آب زیرزمینی 25 چاه پیزومتری در دشت میاندو...

full text

پیش بینی تراز آب زیرزمینی دشت قم به وسیله مدل ترکیبی شبکه عصبی- موجک

مدل‏های پیش‏بینی صحیح و قابل اطمینان تراز آب زیرزمینی برای مدیریت منابع آب اهمیت دارند. در سال‏های اخیر استفاده از تحلیل موجک برای تجزیه سری‏های زمانی و ترکیب آن با شبکه‏های عصبی به صورت گسترده‏ای در مدل‏سازی پدیده‏های هیدرولوژیکی به کار رفته‏است. در پژوهش حاضر کاربرد مدل‏های شبکه عصبی، ترکیبی شبکه عصبی- موجک و رگرسیون خطی چندمتغیره در پیش‏بینی تراز آب زیرزمینی هفت حلقه پیزومتر واقع در دشت قم ب...

15 صفحه اول

مدل سازی سطح آب زیرزمینی با تلفیق شبکه عصبی مصنوعی و موجک (مطالعه موردی: دشت شریف آباد)

در بسیاری از مناطق، استخراج بی¬رویه و خارج از قاعده آب¬های زیرزمینی که معمولاً به مراتب بیش از میزان تغذیه آن می¬باشد، اثرات جانبی زیان¬بار فراوانی از جمله کاهش سطح آب زیرزمینی، خشک شدن چاه¬ها، کاهش آب و یا خشک شدن قنات، چشمه¬ها و نهرها، تنزل کیفیت آب، افزایش هزینه پمپاژ و نشست زمین را در پی خواهد داشت. با وجود انعطاف¬پذیری شبکه¬های عصبی در پیش¬بینی سری¬های زمانی هیدرولوژیکی، گاهی این شبکه¬ها در...

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 44.4  issue 77

pages  51- 63

publication date 2015-02-20

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023