مدلسازی تراز آب زیرزمینی با بهرهگیری از مدل هیبرید موجک- شبکه عصبی مصنوعی (مطالعه موردی: دشت شریفآباد)
Authors
Abstract:
منابع آب زیرزمینی یکی از مهمترین منابع تأمین آب میباشند، از اینرو مدلسازی آنها بسیار حائز اهمیت میباشد. ارزیابی و پیشبینی تراز آب زیرزمینی به پیشبینی منابع آب زیرزمینی کمک میکند. هدف این مطالعه ارزیابی عملکرد سه مدل رگرسیون خطی چندمتغیره (MLR)، مدل هیبرید موجک- شبکه عصبی (WNN) و شبکه عصبی مصنوعی (ANN) در پیشبینی سطح آب زیرزمینی (GWL)، بر مبنای دو معیار ریشه خطای مربع متوسط (RMSE) و ضریب کارایی نش- ساتکلیف (E) میباشد. دادههای استفاده شده در این پژوهش مربوط به دو حلقه چاه مشاهدهای در حوضه آبریز شریفآباد استان قم هستند. مدلسازی تراز آب زیرزمینی چاهها با استفاده از دادههای تراز آب زیرزمینی 15 سال و 6 ماه، برای پیشبینی تراز 19 ماهه دوره آزمون انجام شده است. نتایج نشان دادهاند که مدل موجک- شبکه عصبی تطابق بهتری با مقادیر مشاهدهای تراز آب زیرزمینی دارد.
similar resources
مدل سازی تراز آب زیرزمینی با بهره گیری از مدل هیبرید موجک- شبکه عصبی مصنوعی (مطالعه موردی: دشت شریف آباد)
منابع آب زیرزمینی یکی از مهمترین منابع تأمین آب میباشند، از اینرو مدلسازی آنها بسیار حائز اهمیت میباشد. ارزیابی و پیشبینی تراز آب زیرزمینی به پیشبینی منابع آب زیرزمینی کمک میکند. هدف این مطالعه ارزیابی عملکرد سه مدل رگرسیون خطی چندمتغیره (mlr)، مدل هیبرید موجک- شبکه عصبی (wnn) و شبکه عصبی مصنوعی (ann) در پیشبینی سطح آب زیرزمینی (gwl)، بر مبنای دو معیار ریشه خطای مربع متوسط (rmse) و ضر...
full textپیش بینی تراز آب زیرزمینی دشت شاهرود استفاده از شبکه عصبی مصنوعی تابع پایه شعاعی
Groundwater level prediction is an important issue in scheduling and managing water resources. A number of approaches such as stochastic, fuzzy networks and artificial neural network have been used for such prediction. A neural network model has been employed in this research for Shahrood plain groundwater level prediction. For this reason, statistical parameters of groundwater level fluct...
full textپیش بینی تراز آب زیرزمینی دشت شاهرود استفاده از شبکه عصبی مصنوعی تابع پایه شعاعی
پیشبینی تراز آب زیرزمینی به منظور مدیریت و برنامهریزی منابع آب، بسیار مهم است. برای انجام این پیشبینی، از روشهای متعددی مانند روشهای استوکستیکی، منطق فازی و شبکه عصبی مصنوعی میتوان استفاده نمود. در تحقیق حاضر، مدل شبکه عصبی مصنوعی rbf هیبرید برای پیشبینی تراز آب زیرزمینی دشت شاهرود مورد استفاده قرار گرفته است. این هیبرید بودن شبکه باعث افزایش دقت روش نسبت به شبکه rbf پایه میشود. بدین من...
full textپیشبینی اثر تغییرات پارامترهای هواشناسی بر منابع آب زیرزمینی با استفاده از مدلهای شبکه عصبی مصنوعی (مطالعه موردی: دشت میاندوآب)
در این تحقیق، اثر تغییر اقلیم بر منابع آب زیرزمینی دشت میاندوآب در استان آذربایجان غربی مورد بررسی قرار گرفت. در این راستا، سناریوهای A1B، A2 و B1 از طریق مدل ریزمقیاس نمایی LARS-WG و با بهکار بردن مدل گردش عمومی جو HadCM3 و مدل شبکه عصبی مصنوعی در دو دوره زمانی مختلف (2065-2046، 2099-2080) مورد مطالعه قرار گرفتند. بدین منظور از دادههای ماهانه عمق سطح آب زیرزمینی 25 چاه پیزومتری در دشت میاندو...
full textپیش بینی تراز آب زیرزمینی دشت قم به وسیله مدل ترکیبی شبکه عصبی- موجک
مدلهای پیشبینی صحیح و قابل اطمینان تراز آب زیرزمینی برای مدیریت منابع آب اهمیت دارند. در سالهای اخیر استفاده از تحلیل موجک برای تجزیه سریهای زمانی و ترکیب آن با شبکههای عصبی به صورت گستردهای در مدلسازی پدیدههای هیدرولوژیکی به کار رفتهاست. در پژوهش حاضر کاربرد مدلهای شبکه عصبی، ترکیبی شبکه عصبی- موجک و رگرسیون خطی چندمتغیره در پیشبینی تراز آب زیرزمینی هفت حلقه پیزومتر واقع در دشت قم ب...
15 صفحه اولمدل سازی سطح آب زیرزمینی با تلفیق شبکه عصبی مصنوعی و موجک (مطالعه موردی: دشت شریف آباد)
در بسیاری از مناطق، استخراج بی¬رویه و خارج از قاعده آب¬های زیرزمینی که معمولاً به مراتب بیش از میزان تغذیه آن می¬باشد، اثرات جانبی زیان¬بار فراوانی از جمله کاهش سطح آب زیرزمینی، خشک شدن چاه¬ها، کاهش آب و یا خشک شدن قنات، چشمه¬ها و نهرها، تنزل کیفیت آب، افزایش هزینه پمپاژ و نشست زمین را در پی خواهد داشت. با وجود انعطاف¬پذیری شبکه¬های عصبی در پیش¬بینی سری¬های زمانی هیدرولوژیکی، گاهی این شبکه¬ها در...
15 صفحه اولMy Resources
Journal title
volume 44.4 issue 77
pages 51- 63
publication date 2015-02-20
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023